Course name

Mechanics_1

Course

Field of study
ARCHITECTURE
Area of study (specialization)
-
Level of study
First-cycle studies
Form of study
full-time

Number of hours

Lecture
15
Tutorials
30

Laboratory classes

0
Projects/seminars
0

Number of credit points
4
Lecturers

Responsible for the course/lecturer:

dr inż. arch. Anna Sygulska e-mail:
Anna.Sygulska@put.poznan.pl tel. 06166533
12 Wydział Architektury ul. J. Rychlewskiego 2, 61-131 Poznań, tel.: 0616653260

Responsible for the course/lecturer:
dr inż. arch. Anna Sygulska,
dr hab. inż. Jacek Buśkiewicz
dr inż. Agnieszka Fraska
dr inż. Paweł Fritzkowski

Prerequisites

1. Knowledge: Preparation from trigonometry and algebra. Vector calculations. Fundamentals of differential and integral calculus.
2. Skills: Solving trigonometric problems, adding, subtracting, multiplying vectors. Student can calculate derivatives and integrals for simple functions.
3. Social competences: Student is prepared to work actively in a group.

Course objective

1. Preparation for the design and calculation of simple and complex building structures.

Course-related learning outcomes

Knowledge

POZNAN UNIVERSITY OF TECHNOLOGY
EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)
pl. M. Skłodowskiej-Curie 5, 60-965 Poznań
B.W4. mathematics, space geometry, statics, material strength, shaping, construction and dimensioning of structures, to the extent necessary to formulate and solve tasks in the field of architectural and urban design;
B.W5. issues of construction, construction technologies and installations, construction and building physics, covering key issues in architectural, urban and planning design as well as issues related to fire protection of buildings;

Skills

B.U4. develop solutions for individual building systems and elements in terms of technology, construction and materials;

Social competences

Methods for verifying learning outcomes and assessment criteria
Learning outcomes presented above are verified as follows:

1. Two tests during the semester.
2. Four design works to be passed, checked by the teacher, with active consultations.

Formative assessment:
Assessment of knowledge, computational skills and projects carried out during exercises. Final grading scale: 2.0; 3.0; 3.5; 4.0; 4.5; 5.0

Summative assessment:
The grade obtained during written tests and design works as well as the grade from the oral answer concerning the lectures.

Assessment scale: 2,0; 3.0; 3.5; 4.0; 4.5; 5.0
Programme content
Vectors, forces, moments. Supports. Forces acting on a structure. Equations of static equilibrium. Calculation of support reactions in beams and frames. Construction of trusses and calculation of internal forces using the method of joints and method of sections. Calculation of internal forces (normal forces, shear forces and bending moments) in beams and statically determinate frames. Calculation of geometrical characteristics of sections.

Teaching methods

1. Lecture.
2. Exercises based on the study of specific examples.

POZNAN UNIVERSITY OF TECHNOLOGY
EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)
pl. M. Skłodowskiej-Curie 5, 60-965 Poznań
3. Projects - calculation example individual for each student, with active consultations with the teacher of the subject.
4. eLearning Moodle (a system supporting the teaching process and distance learning).

Bibliography

Basic

Kenneth R. Lauer, Structural engineering for architects, McGraw-Hill Book Company 1981
Philip Garrison, Basic structures for engineers and architects, Blackwell Publishing 2005

Additional

Breakdown of average student's workload

	Hours	ECTS
Total workload	100	4,0
Classes requiring direct contact with the teacher	50	3,0
Student's own work (literature studies, preparation for laboratory classes/tutorials, preparation for tests/exam, project preparation)		

[^0]
[^0]: ${ }^{1}$ delete or add other activities as appropriate

